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A TECHNIQUE FOR DESGMNG ACTIVE CONTROL SYSTEMS 

FOR ASTRONOMICAL-TELESCOPE MIRR(?RS 

By W. E. Howell and J. F. Creedon 
Laqgley Research Center 

SUMMARY 

This paper considers the problem of designing a control system to achieve and 
mzintain the required surface accuracy of the primary mir ror  of a la rge  space telescope. 
Control over the mi r ro r  surface is obtained through the application of a corrective force 
distribution by actuators located on thc rear surface of 'Jle mirror .  The design proce- 
dure is an extensicn of a modal control technique developed for distributed parameter 
piants with kxown eigenfunctions to iactude p12nts whose eigenfunctions must be approx- 
imated by numeric-1 techniques. Instructions are given for constructing the mathemat- 
ical  model of the system, and a design proccdure is developed for use  with typical numer- 
ical data in selecting the number and location of the actuators. 

Two techniques for treating disturbances to the plant are discussed. These two 
techniques, which t reat  the errors as determinist!c and uncorrelated, reepectively, are 
examined from the standpoints of sensitivity to vsrious mir ror  errors, determining the 
;lumber of achkators required, and means of finding the best locations. For  the deter- 
ministfc case i t  was found that the 'best" actuator locations (those locations which will 
minimize the steady-state e r r o r )  ai e very sensitive to the ?mor  distribution. In adciition, 
these locations can presently be found only by exhaustive searches of ail  possible actcaior 
locations, and the number of actuators required for a specific mi r ro r  and s;&cific error 
can only be estimated after much computer t ime is used. In practice ciie e r r o r  distribu- 
tion over the mi r ro r  surface would be expected to chznge with the t e l exope  attitude rela- 
tive tc  the sun. Also, the exact nature of the mi r ro r  e r r o r s  will Iu, time varying and will 
not, in m y  case,  be known very precisely. Fo7 these reasons it is iiot recommended that 
the e r r o s s  be treated detcrminiskically. !n addition, when the errors ai any particular 
time a r e  tieated as unrarrelated random variables, thc actuator locations are much less 
sensitive to specific variations in  e r r o r  distribution, an estimate of the number s f  actua- 
to rs  requireb to prdduce a desired reduction in figure e r r o r  can easily be made, and loca- 
tions which wil! yield results near the estimated f i p r e  accuracy can be found in a reason- 
&Ne manner. Thus, a t  present this technique is preferred even though i t  requires more 
actu2:ors thrcn the deterministic method for  a specific assumed er ror .  

t 



Several numerical examples ate presented for a '76-cm-diameter (30-inch), thin 
spherical  mir ror  and the computer program to i-nplement the design procedure is given 
in an nppendix. The resilts include a comparison of the modal control law and an  opti- 
mal (least-squares) control law. The resul ts  of this comparison indlcate that not much 
performance is to be gained by the added complexity of this optimum control law. 

INTRODUCTION 

One of the mcst  fundamental problems associated with orbiting a large, diffraction- 
limited telescope of the s ize  and type discussed i n  referencr 1 13 that of manufacturing, 
figuring, and maintaining the Lgure of the large primary mirror .  Prlany factors such as 
initial figuring errors, the change from Ig to Og, and changixp; temperature gradients on 
the mir ror  while in  orbit make conventional techniques of figuring and supporting tele- 
scope mi r ro r s  unsuitable. An alternate approach has  been developed in  sh ich  the mir ror  
is rctively controlled by firs1 sens i . z  figure errcrs on the primary mir ror  and then null- 
ing them by properly deforming the mirror, This technique (ref. 2) has been successfully 
iLpFlied to a 76-cm-diameter (30-fnch), 1.2'7-cm-thick --inch mir ror  with an initial 

error of 1/2 wavelength r m s  (X = 0.6328 pm). By using 56 actuators, tbe m i r r o r  was 
controlled to ;L figure accuracy of better than 

c >  
Since the t ime of the investigation reporieu In reference 2, consideration has been 

given to the application of a modal control technique to a c lass  of mirrors.  The mxinl 
control technique represents the plant to be controlled in te rms  of the eigenvalues a3d 
eigenfunctions of the linear difterential operator which describes the behavior of the 
plant. In rc 'erence 3, this technique was apslicd to distributed parameter plants whose 
eigenvalues and eigenfunctions cocld be obtained in closed form. In many praot'cal 
examples, however, the required eigenfunctions are not available. For  the mlr ror ,  for 
example, the restrictions of practical  m a - a t s  (boundary conditions) and the existence of 
holes in the center of the pr imary mi r ro r  used in  Cassegrain telescopes preclude obtain- 
ing the required eigenfunctions in closed form. Estimates of these functions must be 
obtained via numerical approximatioil techniques. The purpose of this paper is to set  
forth for such a system a design procedure base& on the use of the mcdal control Irw 
described in reference 3. F i rs t ,  the modal control concept is explziined, the cc.ntro1 sys- 
tem descrtbed, and the analysts procedure s e t  forth. Certain specific details, such as 
accounting fo r  the pad effects and the t ieatment of initial o r  expected errcr, are then 
covered. Xunerical  data for  the 76-cm-diameter (.%inch) mirror are given and exam- 
ples are presented. Appendix A cmtairls a list& 0: the computer program; appendixes B, 
C, and I), eigenvector listings and diagrams 2nd eigenvalue lis+.i~gs for the mir ror ;  appen- 
dixes E and F, several  examples of actuator placement anti resultant mir ror  errors. 

2 



I Values in  the body of the paper are given both in SI Units and U.S. Customary Units. 
The measurements and caiculations were made in  the U.S. Customary Units. The values 
in the appendixes are i n  U.S. Customary Units and are consistent with the program :n 
appendix A. 

A area of m i r r o r  

ai ith modal coefticient w h c h  expands P in terms of the mode shapes (see 
eq. (35)) 

aN N X 1 vector of coefficients of the force disL-ibution in the modal domain 
which correcponds to the controlled modes 

aR R X 1 vector of coefficients of the force distribution on the mirror ;  these 
coefficients arise froin the action of the N actuators 

C M X I vector which io &he sum of tike CGii:iO: 8j'~tc.x &s~!z.cemn.r!s and the 
disturbances in the modal domain; C is partitioned into CN and CR 

CM figure sensvr  estimate of C 

CN N x 1 vector which contains the elements of C which are being contrcilled 

tN figclre sensor estimate of the N modal coefficients corresponding to the 
controlled modes 

steady-state o r  final va!ue of CN 

CR R x 1 vectrr  which contains the remaining elements of C 

c:s steady-state or final value of CR 

DN N x N diagonal matrix which contains the control system compensation (also 
referred to as the diagonal controller) 

E performance index under the assumption of uncorrelated errors 

t 
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Ami 
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qi  
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9N 

4 

E for a particular s e t  of N actuators 

frequency 

M x N matrix which converts the actuator forces to modal coefficients 
retaining the dimensions of force; E is partitioned intc HN and HIz 

N :c N matrix which contains the rows of the H matrix corresponding to 
the N modes being controlled 

K X N matrix containing the remaining elements of the H matrix 

ijth e h n e n t  of the H matrix 

perfsrinance indices 

gain cons'ant 

total nunhe r  of modes (eigenvectors) used to model the mir ror  

diagonal matrix of elemental masses  Ami 

total mass  of mi r ro r  

mass  of ith element of the s t ructural  m+Jdel 

number of actuators or number of controlled modes 

total force distribution on the m i r r o r  from N actuators 

vector of disturbance coefficients in  the modal domain 

modal e r r o r  coefficient of the ith mode 

the M x 1 vector Q 

N x I vector of disturbances In '&e modal domain which corres  
controlied modes 

ond t the 

. .  



R X 1 vector of disturbances which remain after q is partitioned ir?to qN 
and qR 

remaining modes, R = M - N 
Laplace operator 

M X M matrix of eigenvectors 

M X 1 vector of mi r ro r  e r r o r s  a t  the grid VJints 

figure e r r o r  of the mi r ro r  at the ith grid pLnt  

x,y coordinates on mi r ro r  at t ime t 

coordinate axis directed (pwitive) aiong the optical axis 

N X I vector of forces applied to the mi r ro r  surface (a = aN) 

force distribution over  the pad area of the jth actuator 

area over which the pads act 

s t ructural  damping of the ith mode 

M X 1 vector of eigenvalues 

wavelength of light 

figure sensor  e r r o r  in  determinisg CM 

density of the mi r ro r  expresfed in  terms of its area 

variance of the ith modal e r r o r  

t ime con.+tants 

defined by equation (53);  under the assumption of uncorrelated e r r o r s ,  this 
quantity gives the fraction of '.le ith modal e r r o r  which appears in the final 
error 

5 
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w natur i l  frequency 

Subscripts: 

i 

i,f 

M :ast calculated mode 

N 

n 

Superscripts: 

general t e rm of a vector 

general element of a matrix 

l i s t  mode or actuator under 

nth te rm of a set 

6 estimate 

T transpose of a matrix 

onsideration 

CONTROL SiSTEM DESCRIPTION 

The Modal Control Coficept 

The modal control concept, a applied to mirro'rs fctr USE in  orbiting te!escopes, is 
treated In detail in refererice 3, and deEign exaniples for flat p!ates are presented. For 
purposes of analysts in  the present study, the mirror  is considered to be a structure tied 
to a set of supports or mounts that prevent rigid-body motions. The elasticity crf the 
mounts themselves may or may not be considered, depending trpon the degree of sophisti- 
cation of %e as1:;sis. (The analysis used throughout this paper considers the mounts to 
be rfgid.) The moees oi vibration of the mir ror ,  subject to the constraints of the suppor t s ,  
are the modes used in the analysis. The mrde shapes arc referred to a s  eigenvectors of 
the mir ror  and the frzquencfes are the eigenvalues. 

Generally the mode shapes and frequencies must be obtained by numerical methods 
since the solution of the governing partial  differential equation is not available. The cigen- 
vectors and eigenvalues 01 the structure that are used in this paper were obtained from a 
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numer-31  program (SAME, re  
results have been verified experinientafly (ref. 6). The eigenvectors obtained from the 
numerical program are tabulated in the U rrintrix (see appendix B), with columri 1 
denoting the f i rs t ,  or lowest frequency, eigenvector aJ!d each succeeding column denoting 
higher order  mode shapes. The vector of eigenvalues A (see appendix D) is ordered 
with the lowest frequency first. 

4) and have been chec’ked by NASTRAN (ref. 5).  These 

The finite-element mode! that was used in SAME is given in reference 7. This 
model was used to extract  the f i r s t  58 eigenvectors and eigenvalues of the mirror .  (See 
appendix D.) This se t  of eigenvectors and e!gcn*:alues has been used throtlghout the 
analysis. 

Ore  motivation for using the modal cantrol rant wzs !r, allow the desrgner to decouple 
the dynamic behavior of the control system; another and m m ?  important aspect of this 
control law is that the  mode shapes provide a hierarchy of errors that are likely to occur 
in  practice. That is, the modes may be ordereri i n  such a wag’ that mode 1, o r  the funda- 
mental mode shape, is more likely to occur than mode 2. Also, a measure of the relative 
amplitude i.s available by examining the eigenvalues 01 the two modes. That is, i f  the 
eigenvalues of modes 1 and 2 differ by a factor oi n, the second mode will require a b w t  
n t imes ihe input iorce disturbance to producc. the same  displacement error .  This is 
just another way of sayfng that the mir ror  ( p l a t )  ac t s  as a fi l ter  to high-order mocks. 
The one exczption to this is that care less  ini ta l  polishing and figuring of the mir ro r  could 
generate corsiderable e r r o r  (5s displacement 5) in the high-order modes. Conversely, 
this knowledge of the mi r ro r  should be used tc. avoid fabrication e r r o r s  which will be par- 
ticularly difficult to c n r r c d .  

System Corfigurntion 

For the :Jurposes of designing a corztrol system for a nli r ror ,  the designer obtains a 
transformation from mirror  surfac9 deflections (or e r ro r s )  to modal coefficients, which 
can be viewed a5 8 coordinate transformation. That is, t 

represents a trznsformation from the error at a se t  of points W over the surface of the 
mir ror  to a set  of modal cocrdinatcs q. Figure 1 shows a block diagram of the mlr ror ,  
figtire e r r o r  sensor,  and actuators as ihey appear in a finite modal representation. The 
mir ror  itself is mathomatically represented by the f!ve b!ocks (matrices) labeled HN 
and HR, AN and AR, and Uhf. The superscripts N and R have the relationship 

N + R = M  

? 
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wtrcre 

h-f number of modes used to model the mir ro r  (although there are an infinite 
number of mirroz modes, practical  Limitations require  a finite number, 
and 58 will be used la ter  for ncnier icd  evaluation) 

N number of actuators used inumertcalig equal to the number of controlled 
modes) 

R remaining modes 

in  the physical world the iictuaidr forces aN are translated dirc*ctlp in:o nirr9r 
ttgure riispIacements W(x,y,tj; i n  t=.c rm.;hema:icrti. mdei !he N forces arc tmnsformed 
by the HE 3:id HR matrices snt'? ii se t  of forc-i coefficients aN and 2R, respectively, 
in the m d n l  domain. These forces are ihcn iranstormed by the A matrices. into the 
modal coeffieicnts of displacement. Thrse toefficients, generated by the COntrGl system, 
are suninled wi th  t he  coefficients reprcsenting the error in the  modal domain tf..nt previ- 
ously txisted on  the mirror ,  aac? the rrsu!t (denoted by CN and CH) is %insformed by 
CUM] into tbe  final displacement W(x.y ,t) according to the relationshi:* 

To cositbine this model into a control system r ~ q ~ f r e s  L sens3r  to measure 
W(x.y , t ) .  Tlis sensor output is then changed into the modal c m r d t m t e  system by the 

proper transforrlntion *' [U -T1 . Since N actuators czn eoiltrcl auiy N m d e s ,  ~e 
subset of the N :iclt?Ctt?S modes to be controlled fa ua*rtil:y a11 that !a ge-rated. Orie 
would norm.atly co:,troi on;y the first ,  or !awest, ?i modes. 

The N selected modes are then fed through t h ~  dynar;t;c compensa:.t@n DN{s) in 
ghich the proper gains and compenuaLon are applied to each mode indepc.xicn:ly. If a 
r j . y  1 system I s  used, as wi:t be specified in the sectton entf!letf "EvaluAtion of Steady- 
State Errors ,"  then each dt?p,onal element of DK corrtspontling to one chwnnei cf the 
decouplcd contro:icr will ccntain as integration. 
in the ntod;tl domain. In fact, this output 1s n set of ntcdz3 coefffcie~its which desczik the 
desired force patterns to be distributed on the mirror. To change thww to  .!iscrc'le 
forces,  which is the way Utcy miist t;e applied to the mir ror ,  the values of aN must bu 

transformed by multiplying by [€ir"3 . This matrix [HN]-' also accounts for the effect 

The output of DN, denoted as, IS atill 

-1 

0 



of t!!t physical n;cchantsm through which the actxitor applies a loid t g  the p!ar,t. 'fhts 
completes the description of the control sye!cm wbxh wiif be anulyzt.3 i n  iatcr st.ctiona. 
For a more complete and rigccxs dlscasa!on, see reltrcnce 3. 

. .  

. . .  
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The second t e rm in equation (5) causes an error whtn the mode amplitudes are 
determined since they are not available, and the amplitudes CN are estimates decote? 
eN 

-1 
The t e r n  [UN] URCR represents  the error in the estiir.&tc of C .  It is possib’r;. to 
take mor€ measuxments  thar. the number of actuators used. If for exzimple tte number 
of measurements is selected to be M {M > N), then 

where 
- 

i t )  

li : (9) 

If M is sufficiently large, then SM will be neghgible. Therefore, i t  will be assumed 
that 

{M = 0 

From figure 1, the fOl~GWltlg equation niay be written (with the x,y,t notation 
dropped): 

Since 

and i t  is assumed that 

CN = e. 



_- - . 

substituting equations (ll! and (121 into equatioi. (10) givt-s 

or 

From the other path i n  the system niodel _.I figure 1, 

CR = .IRHR,N + YR 

Substituting equations (11) anc! (12) into equation (15) yields 

-1 
CR = -ARIiRIHN] DNCN t qR 

CR = -ARHR[HN]-'DN[I + nNDN?-lqr* + qR 

(16) 

Substituting equation (14) into equation (16) io-eliminate CN gives 

(17) 

By inserting into equation (17), the following exprcssion for CR is obtained: 

Equations (14) and (le) give the dynardc values of the modal coefficients of the error in 
the niirrer surface. In the pre.cen! application i t  is anLicipated that the primary errors 
wiIl be +he initial f i p r i n g  errors a:id thermal gradieiits t k t  vary rclativcly slowly with 
time. Therefore i t  is reasonable to expect that the system will be generally at o r  near 
i ts  steady state. Thr stea-fy-stace performance of the system is a s c u s s e d  in the follow- 
ing section. 

Evaluation of Steady-State E r r o r s  

i n  determining the steady-state perforlnance of the ent i re  system, f i r s t  equation (14) 
will be used to assess the resulting error in the controlled modes ana then equation (18) 



-_*,-- 

wilI be used to determine the error in  the remaining modes. Taking tile Laplace trans- 
form of equation (14) and considering the disturbance vector q as a step input allows 
application of final-value theorem to determine the steady-state condition: 

1 
cys = l im @ ( t )  = Lim sCN(s) = l im s[l  + ANDN]”col{?) (i = 1, . ., N) (19) 

t-- s-0 s-0 

The matrices AN and DN are both diagonai with 

where equation (20) assumes same  s t ructural  damping. 

The diagoaat matrix DN can be formulated at th discretion of the designer; hon- 
ever,  a type 1 system is assumed, so that the combinatim of AN a d  DN is of the 
form 

= diag 

and 

L 

which can be simplified to t h o  & x m  

- 
r i l  

i=l  
n 

i=l 

K -IT bif*s + 1) 
diag 

s TT (Ti’s + 1) 

J 

t 

t 13 
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by properly combining the numerator of equation (22) and factorir4. Putting equation (23) 
into equation (19) and taking account of the inverse yields 

czs=tli s (i = 1, . . ., Nj 

This is the expected result that a ty?e 1 system wilt dr ive th.? error in the contro:led 
modes to zero. 

In anticipation of evaluating the steady state of equation (181, equatior. (21) acc! t h e  
inverse of equation (23) are combined to get 

Furihermorc,  since 

and 

equation (25) can be use& to determine the steady-state value of equation (i8): 

OT 
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where equations (26) nd (27) indicate the rzxtxre of A R  and [Aq-'. Th natu 

! 
t 

.--- 

of the 
H matrix and how to evaluate it is g i w n  in the next secticrn. Equation (29) states that 
the final steady-state e r r w  consists of two parts. Th-? first part (I$) is that due to the 
original error in the R = M - N modes which were not controlled. The secocd part of 
the error is that generated by the control system itself as it corrects the error in the 
first N modes. 

A few notes on the dimensionality of the matrices in equation (29) are in order. 
The error vector qN is the initial error  i n  the N modes (not necessarily the first Lq 
selected t3 be controlled and is N X 1; qR is the set of errors in the rcmzining modes 
and is R x 1. Therefore, 

The AN matrix is an N X N diagonal nixtrix which consists of the natural frequencies 
of the nides  being controlled; PLR is an (Id - N) x f M  - N) diagonal matrix of the fre- 
quencies of the remaining modes. The HF and YR matrices are N X N and 
(M - N) X N, respectively. How these are obtained is given i n  the next section. 

Determination of Pad Effects 

The function of the H matrices (HN and HR) is to take the point loads of the 
actuators and transform them into modal coordinates. 
two H matrices, consider first the continuous case. Let the force distribution on the 
mirror P(x.y,t) be denoted by P 

To determine the elements of the 

N 
P 

where crj(t) is the time-varying coefficient of the jth actuator and pj(x;j'l is tile dis- 

tribution of the force on the mirror because of the pad. A "pad" is the physical device 
that conxiects the actuator to the mirror. This force distribution may be expanded by 
using the complete ortkonormal set of modes: 
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where the (x,y,t) notatior! is understood. Because of the properties of this Fet, the coef- 
ficiei:ts may be determined immediately: 

(33) 

where I' is the area over which the pad acts. 

Substituting equation (32) into equation (31) gives 

Another way of writing equation (31) is 

which expresses P directly in te rms  of the eigenvectors. The implication of equa- 
t i m s  (35) and (34) is that 

(34) 

or 

The elements of the €i matrix are defined by equation (33). If small  pads are a s s t "  
and it is further assumed that the load distribution is uniform, then 
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The assumption of small  pads leads to tile conclcsion that the inode shape is relatively 
constant over the a rea  of one pad, and equation (33) bccon*es 

and 

Iim H -- 
r-o 

Jr 

(39) 

When selectifig the  te rms  Ui(xj,yj) i n  equation (39). the coorcha tes  (x.,y. are drier- 
mined b:y the actuator locations since 
ator location. Note that the H matrix is nor. ,riearf. There will be N columns corre- 
sponding, to the N actuator locaticms used; however, a l l  M rows will be present since 
each anti every actuator will, in general, excite a l l  PII niodes. For a la lysis  prposes it  
is ccnvenient to partition the  H matrix into two parts: 

\ 3 J) 
8, is assumed zero everywhere except a t  the actu- 

(40) 

The first matrix HN consists of tile K rows which correspond to the modes which h x - e  
been seitcted ts be controlled by the N actuators; HN is therefore square. It is not 
necwsary  that +he first  N rokrs (X modes) be selected; ho-:lever, this is usually desired. 
The reason for this will beco;nr clear i n  die examples. This arrangement will be sssumed 
i n  future  notntioti for the I iN matrix. 

Since H', HR, AN, .\*, q', and qR have aclw been obtained, the steady-state 
e r i o r  from equation (29) may LY calculated f i x  a given thoice of actuator locations and 
modes t? be controlled. The only remdninq consideratim is Lhh,? performance index. 

'I 1 I 



or, jn matrix notation, 

3 ;I - 1 T  w giw 
A 

W M x 1 vector of mirror displacements or e r r o r s  

A total area 

The first N modes wi l l  contribute no steady-state error to a 6iep response i n  a 
type 1 system since It was assumed that eN P CN, The f ina l  value of W is therefore 
c * e n  by 
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PERFORMANCE EVALUATION 

Calculation of the Performance Index 

To oStain the best performance from an optical system, it is neceszary to minimize 
Fie rp-s Jurface error of the e l emmts  (ref. 8). This error is defined as 

i’w analysis purposes it is usually easier to work with a slightly different quantity which 
provides an  equally valid measure of relative performance: 

J = J*2 

Using 3 az the performance h d e x  and changing to discrete notation because of the 
numerical nature of the mirror  problem gives 



R where Css is the (M - N) X 1 or R X 1 vector of the f ina l  error in the uncontrolled 
moder and is obtained from equation (29). If U, the matrix cf eigenvectors, is obtained 
from a finite-element program - as was  done herein - then the eigenvector matr ix  is 
orthogonal with respect to the mass ma.trix m (refs. 4 and 5): 

UTmU = I 

For a homogeneous mirror of uniform tkJckness, m may be specified as an area asso- 
ciated with each grid point in  the analysis t imes an area density constant p. Then m 
may be written as 

m = p diag@Aa = p[a] (46) 

o r  

'@] P =[A4 

Using equations (47) and (45) in equation (44) givrs 

(47) 
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where the total mass  is 

M 
mt = 1 Ami 

i= 1 

I 

The contribution to the mean-square error of any mode is seen  from equation (51) to  be 
given by Ci2/mt. 

tion of the mir ror ,  it is important t o  express the desired system periormance withiti the 
framework of the alternate reference frame. The significance of equation (51) is that it 
expresses the figure of meri t  of the system performance - r m s  error - as ;L very simple 
fun-tion of the amplitudes of the higher order  modes. Thus, minimum r m s  surface error 
on th? m i r r r r  is obtained by mininiiziilg the sum of tke squares  of the amplitudes of the 
higher o rde r  modes. If only a relative measure 0: me actuator arrangement over another 
is of intepest, the te rm l/nq may also be dropped since it is constant for any given niir- 
ror. This gives 

In any approach where the controller is designed by use  of an  alternzte represen!a- 

Treatment of Initial E r r o r s  or Disturbances 

The q vc-ctor obtained from t2qUal,Jk (1) assumes that G.P error a t  each gr id  point 
on the  niirror surface is known. When t h i s  is used in equation (29): the resulting design 
reprecents a deterrxiiLstic treatt.ient of the e r ro r s .  While such T, treatment of the e r r o r s  
will lead to niinintum final error, the resvlt can also lead tii owroptimism rJn the par t  of 
the cksigncr. Corsider the following cdse. 

Given 8 set of initiai errors, the designer detcrmines ?hat ;L specific actuator 
ni  +anpenlent wiSl reduce the final error to an acceptable vaiue. When the ni i r ror  is 
placed in orbit ,  i t  i s  highly likely that L!e errors will  be different froci those anticipa:ed. 
A s  2 result, the s e c m d  te rn  in equation (29) - the error generated by Uie contto: 
system - WJII changc. possibly .;ignificantly. Consequently, the total e r r o r  as given by 
equLlior. (29) may now be unacceptnbk. 
to r  location, based on deterniinihtic errors, is sensitive to initial error. 
of course. how sensitive? Usually w r y  sensitive, becav:w t iw actuator px i t i ons  have 
beer. clioscn to generate specific iimounis of eri'or in  the uncontrolled mcdc; (generally 
opposite and Cquitl to whst was oririnally there) when specific aniounts of rrmr are 
Pemoved in the cont:.olkd modes. A slight chnwe in the error i n  the eortrullcd modes, 
therefow, couid niake a great deal of difference i n  the final error. 
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It is corxluded, therefore, that the '"bestL' actua- 
The cuestion is, 
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An alternate way to treat a n  error is i n  an  uncorreiated fashion, as suggested i n  
reference 3. In this approach the valltes of C!& are  still given by equation (29); how- 
ever, the performance index is now the expected value of the mean-square error 

where E is the expectatibn operator. If the errors are uncorrelated, then 

and 'he performaxe index becomes 

For the assumcd type 1 system. wlwre 

equation (36) may be rewitten as 

whore the variance of the error, which is assumed to have ZCTQ mean. i s  givcrr by o2 

By rcvcrsing the order of summation in  the second teria of equntiun (58) and n u k i n g  ttrc 
additional sut)stitution 

Yt' 

M-N 
6: = 1 t$j,i 2 

j=l 
(59) 

equation (58) cat1 be rews!tte~i 

t 



One notation addition is needed in equation (60), that is, to add the subscript N to 
E ziiil io  diA to indicate the number of actuators being used. This wil l  prevent confu- 
sion later. EcpaUon (60) is then written 

It should be pointed out that equadorr (8:) represents an expected error .  Depending upon 
the inc!ination of a particular inchridual, he may choose J*, J, o r  J1, given by the pre- 
vious equations, 85 a measure of the pPrformance. The only problem with these equations 
for the perfwmance is that they require exact knowledge of the e r r o r  vector and may be 
quite sensitive to changes in  the error vector, while eqmtion (61) requires only a knowl- 
edge of the variance of the error. It I s  more realistic to make att c w n e e r i n g  esEmate of 
t!is latter piantity than of tho actual e r ro r s .  

two esrm components will add directly. To influence the e x p c t e d  error, the designer 
may do two things. First, hz s h u l d  encourage thc cpticians to keep the e r r o r  in the 
higher order  modes as snail as possible because he cannot do anything to reduce thfs 
e r r o r  exccpt possibly increase the value of N. Second, he should select actuator loca- 
tions which would minimize the value of dfN. In fact, if @FN could be made zero for 
i = 1, . . ., N, then the expected e r r o r  wnuld be independent of the initial e r r o r  in  the con- 
trolled mwles. Since most of the trror wil l  Iikely occur in  the first N modes, choosing 
actuator locat!ons to m:nlmizt I$& will lead to locations which tend to produce perfor- 
mance indices VU hafly independent of chtrzges i n  error .  

in the fcllowint: sections a id  &e appendfxes, various design exrtmp!es will be given 
which are based upon the thmrv developed u;, to this point. Effects of inltia1 e r ro r s .  actu- 
ator placement, error treatment, and the number of actuators necessary for a particular 
case will be discussed. 

In equation (61) both parts of the error are seen to be positive. This mcans that the 

DESIGN PROCEDLrRE: 

Numerf cal and Physical Data 

thick (!/'b?-lnch), ?6-cm-&amcter (33-tnch), F/3 spheric21 mirror which is supported on 
a kinematic (nun-werconstrained) mouct. 

As mentioned in the Introduction, i t  is generally not possible to obtain dosed-form 
expressions of the eigenfuncticns of a practical mirror amfilfuratton such as thtt con- 

The mirror wKch wi!l ,w used In lire analysis is shown in flgv're 2. It la a 1.21-cm- 



? 

t 







t 



with previous o r  desired results. It the resul ts  are riot satisfactory. then a new design is 
tried. Since many trials will be necessary, the only practical  approach is to perform the 
design with the aid of a computer. A program to bd ld  the various matr ices  and to evalu- 
a te  C:. and the performance index JI has been written in  FORTR4N JV and is given 
in appendix A. The flow diagram for the program :s given in  figure 5 ,  where the s teps of 
the design procedure are s e t  out in  a straightforward manner. 

f 

* 
A5 shown in figure 5 ,  the program will f i rs t  read in values of the eigenvector matrix, 

the eigenvalues, and the initial e r r o r ,  o r  disturbpnce, vector. The program must then be 
supslied with the number of actuators N to he used and the placement bf these actuators. 
Actuator placement is specified by grid numbers. The selection of actuator l oca t i~ t i  ar.d 
number is the major degree of freedom that the control systeni designer has,  and this 
selection niore than any other will influence t h  value of J1. The program must then be 
suppLied with the number of mcdes to be controlled (the number of contrclled niodes must 
equal the number of actuators) and these modw identified. Identiiicatim of modes is by 
mode number corresponding to the column numbers of the U matrix. Wi!h minor  excep- 
tions, thess  should always be ffie f i rs t  N modes. From this point the program will sor t  
the A, q, and H matrices and ca r ry  out the calculation of C,", and J1. The program 
wi11 also do one other task; namely, it will calculate t!!e actuator forces ana final e r r o r  on  
the basis of making a least-squares f i t  of the errors to the desired rhapc. This a l l ~ w s  a 
comparison of the modal co.;trol law to an  optimal control law for the same  actuator loca- 
tions. One restriction on the program, and ultimately the designer's freedutn, i s  that the 
choice of actrator placement must be restricted to grid points of the structural  anaiysis 
model. Tkis restriction has  not been found to be ser ious in  the prpsent I- - '  del. which has 
58 grid points. 

One yarticular word of caution is in  order  about this,  or any other $wKz-iixn, which is 
used to calculate the final error. For  a given nad shapc and size and a giveti s e t  of modes 
to be controlled, selccting the :ictuator placcment pattern fixes the H' matrix. Since the 
frwerse of HN is part  of the cordroller, the actuator loca!ions must Sc chcseii to insure 
that HN is nonsingular. A singular (or ill-conditioned) HN matrix indicates that !he 
dcsigner has placed actuators in such a nianner that the amp!t:ude of a+ least  one controlled 
mode a t  these actuator locations i s  (or is nearly) a linear combination of the amp!itudcs crf 
the other controiIed modes. If €IN is singular, the X,UatOrS cannot indcpendcntly CGntZGl 
the givct modes. If HN is il l  comiition?d, the niodes can be coiltrolic;.d but only at tilt* 
expense of large applied contrrtl forces,  which generate considerable error in  the hi1;her 
order t n d e s .  
tialiy singular matr:x mainly on thc ' nais of an .whator-placement pattern is almost 
impossible. 
sons of numerical roundoff and the psrticular invcrsfon proccdure used, it wil; ohirin 
"invcises" for very ill-conditio.ied or even sinbular matrices. The ciograttx gf teen in 

The designer obviously itlust avufd these cases ;  however, spotting a poo!en- 

The computer especialiy has  krouble spott+rig &his condition, since for : ea- 
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appendix A treats  this probleni by calculating and ])r€nting out the normalized determinant 
of HN. If the normalized determinant is very small  relative to 1.0, then H N  is said to 
be ill conditioned. (See ref. 9.) Usually an ill-conditioned IfN matrix w i l l  result  i n  a 
large value of J1, which automaticzilly excludes I ta t  actuator arrangement. This, how- 
ever ,  is not always the case. (See, @.%., fig. E l 0  and associated discussion.) 

Results for Deterministic E r r o r s  

From the firs. set of e r r o r s  a series of design t r ia ls  were run wfth various numbers 
of actuators. For the 58-node mir ror  model, all possibie combinations of one, two, three, 
four, and five actuators were surveyed. Beyond five actuators, the number of possible 
combinations becomes too large to make exhaustive searches. Several design "rules of 
thumb" were tr ied to choose actuator locations: however, none of theso provided v;Llues tif 
J1 that were considered to be near ihe iiiiriimum in tight of tbc resul ts  from the exhnus- 
tive searche? carr ied out ior fewer actuators. 

The technique that produced the best resul ts  was a gradient-type s t a r c h  which used 
the computer interactively. In this technique an  initial actuator ijiacemcnt is chosen and 
the output of the compbter is preser,ied on a CRT. A perspective v iew of the mi r ro r  is 
also generated which shows the deformed s ta te  a i ter  control. A series of these perspec- 
tive plots for five actuators is given in figure 6. On the basis of the tabclated data and 
the perspective plot, one actua.ior is molted one grid p0ir.t and the program rer-rn to see  
whether a gradient can t e  set  up on J1 to improve :he mir ror  performance. At  most, 
bix irials are r q u i r c d  to exhaust the poscible moves ior one actuator. The most impor- 
tant single piece of information turned out to be the perspective plot - especially e x i y  in 
the search procedure. This plot allowed the grid point with t!e largest  e r i o r  tr be easily 
spotted, anti the actuator nearest  this error was riioved. The series in  figure 6 took 
approximate!y 2 hours and improved the performance ind-.x J1 f rom an initial value of 
1136.6 to a value of 100, a factcr of IO. 
improvement. 

imurn value J1 = 72, obtained fiom a ~ -  .xhaustive search. The total n u m b ?  of r u n s  that 
were require2 in  the grxiient-=:.trcl-t p r o c e ~ a  was 63. If the progr&m were impIeaiented 
so that the computer mP% all ff~e chiccs  of actuatcr placcment, the gradient ::ear& would 
require about 30 r-econdz of computer time. The use of the computer in the interactive 
mode, however, allowed ccnsiderably :1icie insight to be gained into what factors wcrz 
affecting performance ar;d what factors were not. 

Further effort bcyoad this point faiicd to provide 

'fie r e s i l t s  obtained from these gradiert  runs can be compared 'vith the knowt min- 

The resuIts of the exhaustive searchcs for up to five actuators are given in appen- 
dix E. In each case the best 10 local ions are ehow*n. The initial performance index in 
all cases  was J1 = 1136.6 and hvo errors 2re gfvcc. '&%e f i rs t  is the final e r r o r  
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obtained with the modal control law and the second is the result obtained wherl the actuator 
force 18 selected to minimize the rms e r r o r  31; the mirror.  This is referred t . ~  herein as 
the optimal cclntrol law. A summary of these resulrs if given in figure 7 for the modal 
control law. This figure &!ow8 the midmum error obtarned p;otted against the number of 
actuators used. The top curve is for the f i r s t  e r r o r  example and the lower curve is for 
the parabolic-error condition. Note that the rertical scale is logarithmic. 

ber of actuators that a particular disturbance vector might require for  a given mi r ro r  and 
performance index. That is, an exhaustive search over the model is made far a llmlted 
number of actuators and the results extrapolated to the desired performance. This would, 
of course, lie equfvaleilt to assuming an expormttid decay of e r r o r  with increasing number 
of actcators. The class of e r r o r s  and plants for which such an assumption uould hold is 
not known. Clearly, the e r r o r  generated by the four loads of 4.448 newtons (1 pound) a t  
?he discrete grid points is noc i n  this cSass since the final e r r o r  is z e r c  fcr four or more 
properly located actuaiora. 

The problem with the determLnistic approach is thst first, there is presently no way 
to determine readily the best actuator placetzect, and second, the placement is very sen- 
sitive to initfal e r ror ,  

The plot in figure 7 suggests an empirical method of estimating the minimum num- 

Results for Wncorrelated Errors 
Wben the designer assumes uncorrelntcd e r r o r s ,  considerah!y more can be said 

about where actuators shouId be pbced  and how many actuators wit?  be needed. 

Firs t ,  equation (51) is minimized instead of equation (29). Since the f i r s i  t e rm in 
equation (61) is constant for a parhcular number of a c t ~ a t o r s ,  the goai is to minimize the 
second term, which is the e r r o r  generated i n  the uncontrolled modes by the control system. 
Instead of writing a prcgram to do LMs, an  altercative procedure which ecabled the existing 
computer program to be used WSB adopted. "!-iis procedure yielded reztiits thzt closely 
approximiked those which would be obbined from equation (61). The alternate proc:edttre 
consisted of a deterministic minimization of the second term in equation (29). This cor- 
respOrrds to the ictent of the uncorrclated case in efiirhating the 2cssibility @f d control- 
system-generated e r r o r  cameling an existirg error. If the values of biN a r e  suffi- 
ciently snlafl, there wili only be a trivial Jiffcrencc in performance betweeri the two 
procedures. Sir.ce the second term of equition (61) i o  to 5e assumed smzll, the final 
value of :he expected e r r o r  is the first term of eq-sktion (el). A pint of this portion Jf the 
equation is giver in figure 8. 

exhaustive searches were run for only the f i rs t  error example. The results of these 
searches are given in appendix F for one, two, three, and four actuators. The vzlues of 

2 

Since the actuator locatlons are less sensitive to i n i t i d  e r r o r  for this criterion, 

f 
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d':* f"' the best run of each numbw of a*.tua:ors are given in table 11. Since the values 
of '3fN are relatively smal1, the expected error ialls right on the predicted v;llt:eu of 
figure 8. 

The choice of possible aciuator locations car. be considerably reduced when it is 
desired to minimize the generated error. A look a t  the actuator location fcr four actua- 
tors shows that each set lies very close to the nede lines of mode 5 and several hfgtier 
modes. As pointed out in reference 3. this mc-am that these modes will not be excited to 
any great extent. The first mode that is excited to any grea t  extent by this arrangement 
oi fwr actuators is mode Ll. The ratio af ctgenvalws fut mode 11 to %node 4 is 

This means that the ftltcring action by the tntrzor is a b u t  E t imes as much for mcde I1 
as for mode 4, the last  controi!ed mode. 

To test  the concept of placing actuators a t ,  or nejr,  ncxies of higher order  modes 
to firinimizc the generated e r r o r ,  the case  for s v r n  ;rrtuators was w i d .  The scven- 
actuator case was chosen because c: hvo idctoi'a. First the eig?!rvalue plot of figure 4 
~ h o w s  o distinct jump keiveen modes 7 and 8. This implies good filtering actio:% by the 
mi r ro r  at this point. Second, i.ht. expected-erroc !Ant of fiwurc 8 sho-,es P jump bcb'cer! 
stx ami seven actuators. This implies that a conAucrablc increase in prfC?rn:ance can 
be cbt i iwd wki4 seven actuators over stx actuntore. In wlcctirtg the actual t;riri Ioca- 
tions the node lilies for niodctl 8 ,  9, and 10 were overlaid an2 2 &et 0: Rrid pcAnts near the 
function of these modes w3s selected. (See the last dfqp-ar? of fig. F5 fi\. appendix Fa) 
This reduced set of grid points was searchefi €or t!!OSF locltfctiiv which ylfMcd niinfniuin 
gcncratcd error. The results of this serirrh are given In table D (c2,.\ m d  in lite last sei 

of fifiurcrr cf appt*ndix F (actua!or locations). m e  cxpccfed perforsx:;mcr isir!rx wit!: kc 
best arr;u.yemeni of seven 3etuators, obt.&ncd by using the minimum gencrateu-crror cri- 
terion, was Jy = 274.9. Had :!I1 the va!~cs  Gf 0 1 2 ~  k e n  exactly zero, the yerlornnncr 

index would have been Jl = 'IE.C.6. The results,  therefore, art' ve ry  close to the predicted 
values of figure 8. 

. i r t  

Ir should be noiet! that this rewlt was obCained by searchitlg only a reltrtivc f ~ w  oi 
the poseib!c ietuator locations, therefore, i t  canmt  & tiaid ittat the rcsult rrprcsen!s the 
actual minimum. The ;;r,;\ortant point is that a relatively Short cu:.iputer ~ U R  was h l e  
to establish a se t  of actuator lucadons having a final wror very close tu !lit& zbs6lute 
minimum. 
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Comparison of Modal Control and Optimal Control Laws 

As was stated earlier the computer program which *UPS used to cafculate t h ~  final 
errors also calculated the error that would have been obtained if ar t  optimal co;ltrol law 
(least-squares fit to best sphere) had been used. In the ruodai domain the error is given 
by merging equations (IO) and (15) tc, get 

;i is desired to find the vafue of Q Y N C ~  nitntniizes 

Therefwe. 

This ylclds 

(56) 

f rom q u t i c i i  (66) the value of the f ~ r c t - s  nce&d to niinln:izc !tic vi lup of J1 is 
calcuhkd. The vector C is then calculated from equation f63), a d  Jf is dctcrmlned 
from equation (64). The computer prfwram outputs thr IY vector and the value 31 Jl. 
This can then be eonipzred witkt Ute a i n l l l x  vaiuc of J1 wxcr  the m-cA;ll cmtrol law, 

actuator 1ocat:ons that were "good," there was fittic Olfffirc-nce in the f t m !  rcuult. "tie 
Nurnericnf compsrfsonr arc given !n appc*ndLxcs E and F. Gcneraiiy, i:Lven a bet G f  

counlerbalnncir+: features of Lhrse two control I n s  2rc that thv ni&d control law cnablce 
t!w dpatnic kchwior of the mirr3r to UP cortsKL*red while  the optimil control law would 
tievcr n?z;;e the mirror WOI'SP than it was orlginnllfy. To rrratc more error than the orig- 
iwi error would require a rallter grosti misplacement of actuators on the part of the 
control-system designer; l;OX'Cver, it 1s I>os!JL!*. 

Fo: example, wf e n  the errors oi example i: in table I arc treated drtermlnisttcalty, 
the cmclusirn is that the bcs: actuator loca:ion i s  in the ccntcr of tbe m i n o r .  If now the 
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error distribution changes so that the mode 1 errw and the mode 3 error are inter- 
m g e d ,  the finai error will  be much W O F S ~  than the original. 

The teaam for this is *sat the actuator was phced OD P node of mode 1 while 
instructed lo control mode I. T h s  produces considerable force, which generates con- 
siderable error. Yn the original distribution it was desirable to generate 01 &t of enrane- 
ous mode 3 error, but in the modified error distribution it is not desirable ta generate 
much mode 3 error. The optimal controt iaw, faced wi th  the same situation, wwld do 
almost nothing in the aecorrd case, resulting ~ Z J  atmust no change of figure ermr. For 
either Fsirol hw the actuator placement was bad. 

decision-maktng capability as to rektivc performance, mi ld  resuft in a mirror figure 
that is worse than the original figure if the actuators i v c  placed in ;t poor location. Tie 
ability of the modal controt law to "order," or to establish a Merarchy of, likely mirror 
deformations thrmg!! tho e4~-v@cfcrs and to provide a measure of relative Ukeffhood 
through the ratio of eigenvalues means &at the controi-system designer will not place 
actuators in a bad location when using t h b  control law. 

It should be rccognfzed that any closed-loop control hw, except one that has a 

Design Examples 
To be spectfic, consider &e case for four actmtors imd error e n m p l e  1. Trint 

ac!uztor locations are grid points 2, 30, 42, and 45; and the controlitxi modes arc to be 
m d c s  1 to 4 inclucrive. T I I ~  IiN matrix IS therefore given b;v 

x 10-2 9.891 x 10-3 -1.301 x 10-3 3.009 x io- 
5.199 x 10-3 7.2b7 x 10-3 13.454 x 10-3 -1.018 x IO= , 

x 10-2 -4.529 X 10-2 -3.302 X 10-2 -3.347 % 

X 10'2 -5.48 t X 10-2 -1,235 X 10-2 -1.229 X IO' 

a 

S6 



. . .  

Absolul v2lure 
(rws wavelvwth, 

A ,  0.532% 3 mi F h k t i V f ?  VaiUeb - 
Total original error . . . . . . . . . . . . . . . .  1136.6 0.64 

Origina: error In rentaining 54 m d e s  . . . . . .  518.0 0.453 
Original error in first four nmdes ........ 618.0 0.474 

Error generated by the control system in  the 
54 uncontrolIed modes . . . . . . . . . . . . .  346.0 0.354 

Final error by the modal control Ivw . . . . . . .  13 i  1 
230.4 Finii error by Utt optfmat control la* . . , , . . 

0.2 18 
0.217 

The resuits correspcnd to the best posafble incation for four actuators ior the detcrmin- 
istic error criterion and errw example 1. 

For tht caw just givcn, ali factors worked tog o prodrrw an acccp!able design: 
hwcrer. i t  is instrucltve to consider briefly a case !..:.it does not produce good results. 
For example, i t  was stated earlier thzt the first (lowest) N modes werc csu;llly con- 
trotlcd. Xow consid%- ;a CISC tn which this I s  not t x e .  En error exaniplr 1, table 1, I t  
can be seen that the four modes which contain n ~ o s t  0: L\c error arc modes :, 5. 7 ,  and 10. 
Suppose @a? t!!c move actuatw I~cationa (2, 30, 42, arid 45) arc used a d  the control sys- 
tem f5 design& tu drlvc these four modrs to zero Instecid of the first four. The 2iK 
matrlx would now te diflcrcnt. For rrlcrcncc, the first column woutd n m  tw? 

P \ 
col -1.092 x 10-2 0.519 x 10-2 -3.007 :< 10-2 5.809 x 1 0 - 9  I 

This, in it: elf, presm’3 no problems; hrjw?ver* in equation (G2) tfrc ratio o f  the ctjicns;llur 

of the first m d c  which would be exrKcd .\ 11 to the e:~cnvrrlue uf thc  hiqhvst controlleu 
mode h.4 WPP 



t therefore 
expect that the final error for controlling modes t , 2 , ?  ;tnd fO couid tx w x s e  than the 
errat for controilnp, m a r ,  1, 2, 3, 2nd 4. me actuai cafculated firu? error fcr rantrot- 
hng modes 1,2,?, and 10 was found to be 

which le worse than the original error. It might be argued that 3 dtffere;lt actuator place- 
ment nrntld improve this answcr. AJthclrfih &is la probably true to sumc c-xicnl, a RCW rjct 
of acluitor tocations can only change thr €is matrix hut not U!C atlo in equation !e@, 
which IS the undlrlplng eziliie of the prrib'cm. 



i! 
I 
I 

locations. Also, for thz uucorrclatcd treatment it is possible to estim:t?e the iiurtibrr of 
actuators 8 given mirror and niount configu-ation wil l  require by usii;c: an c ~ s t f t n ; t t c  uf 
only the varinncc of the expected errors. 

Langley Research Center, 
National Acronautrcs and Space Administration, 

Hampton, Ya., November ll ,  1272. 
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This appendix contnirw a listing of the pzcyrarn ~ I J  calcsul.ttc fibwrr w r c w  of the mlr- 
ro r  on tile basis of P type 1 mocinl controller which controls N nroticrr. Thc progranr 
cont:tins ;i p-citt deal of ~ * ~ i i i t ~ t * n t  staterncnta to aid tlic utrvr. txlt a icw ndditionnl corririicnts 
arc i n  order. 

First ,  one muat obtain u ect of eiptvwalues and thc cigctavwtors for thc  particular 
j:Lirror tu tic) nridytcd. Tnis 1s a major mdcrtaktng and strwdti Iw C o w  wttlt ;L st.indiird 
s t ru r twa l  ;uxilysls proFrnni. Tlir sirr of the c r ~ r n v c c l u r  nintrix it; ;t crit ical  item. Sitice 
;ictunttlr's Cnil tw placed onif  at gr!d jwln!q of the structurii: aimlysi:: n i d r l ,  a sulficicnt 
nunitvr of tlrrsr jirid points must  bt: used to idtow reasonable Slesitulrty In actuator place- 
i i icwt.  Too ninny grid poitits w i l l  rmult in a matrix that is too large to f:.iiidIc :ind rcqbires 
t>:;wssive stnrnjie. T h r  58 grid points and the 58 x 58 U 
h a w  proved to be rcasonai)lc. This rcsults in a storage requirenrcnt of 110 0008, which 
inny be too ?.irgc for sonic s p s t c n s .  

matrix ~ t v f  in  this analysis  

The next rcquirenient is io c'itain an  c r r a r  vector. This znay be obtalncd from 
txp?rin;ctrtnl data by estinr,tting o r  de;orinini;;g the niirrnr f r r o r  at cnch gri6 point i'nd 
wultipiyir,g ijg CUI-',  o r  i t  niny be artirrc;t!iy gent'ratcd, 3s w e r e  cxan?pics 2 and 3. ~c 
c.:~y c a w  t h  prog:rsni nssunies that  thc error vc?tor is already in mrjtlal rv>rdinatc>s. An 
o2tion of n:uJtiplyiq; this error vector by a constarit (to change units) is provided atso. 

"lie nest 01) ion sclects thc outpct. The short ciption IS rccomnirndcd for dl1 ruiis 
escept d&.t:~~ i ry  a:!d exantinin;: f i r d  runs. An cxaniplc of thc conlpie:r output is Given 
after t h c  jirograiii 1istinK. The short optiort is Chr- kist page of ou!pul. 

T h c  final option allows tkc designer to rt:ani;e a few of the ackiators and control 
niults wittiout cotnplctcly rewriting t h e  dtta c.ir&. E.p sc-tting NEW = I ,  a s inglc  actu- 
ator 1oo:iticm (or srvetiil !omticns) can t?e shifted by one number. For example, i f  a set 
of scvcw nc1uato:'s is k i z g  run and i t  is d2sirc.f to vary t he  location of one 01' two ilcttia- 
tors to several selected points on the mirror ,  it can be done by wiiig this option. Xssurne 
tti2t the orig,:i:al data crtrds contain x w k s  1, 2, 3, 4, 5, 6, ar.d 7 as controlled niode:; and 
actuator loc+ttioas of 6, 16, 20, 24, 35, 55, and 30, and i t  is desired to c h n p e  an actLator 
I W 3 t i G : l  frotti cr id  point 50 to !:rid point 40. In tkis case the ?rlOCH:;GE v:o!rld be zero ;in6 
LOCHKGE ~'oulc! be 1, and t1.c next ~ 3 r d  would mfitain the w m b e r  19 i n  proper formst. 
The control!cd modes would their b ~ -  the sanic, but the  actuator locations wotld be 6, 16, 
20, 24, 38, 55, and 4% Note :hat i t  1s neccss3rp to plnre the actuator(s) to be moved a; 
the end of the  list in the original data card. 
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I APPENDLX A - Continued 

The remainder of th- prr.gram s o r t s  matrices, calculates thz various quantities 
needed to evaluate the perfcirmance, and fcrmats the output. One point near  the en6 of 
the program might cause confusion i f  data on a different m i r r o r  are used, that is, the 
conversion of ihr force vectors to pounds. The value of 1.25 x assumed that the 
original errors on the m i r r o r  surface were in fringes (X = 0.6328 pm). If not, the error 
can bo scaled in the f i r s t  part of the progr?m. Another potential trouble source is in the 
use of the eigenvalues. SAME eigenvalues are inversely proportional to freqilency 
squared, and other progrants (NASTRAN) output eizenvalues in  frequency directly. TIUS 
can be corrected at lilze 0004G7 by changing OKEGASQ(J) = 10000./WMBDA(f) tr, 
OMEGASQ(J) = 1COOO. * (frequency squared). 
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APPEhDIX I3 

EJGEhVECTOFiS OF THE MIRROR 

This appendix contains a Usting of the U matrix (matrix of eigenvectors) for the 
76-cm-diameter (30-inch) thin mirror. This matrix was obtaineG from the SAMIS pro- 
gram i n  reference 4. A more graphic display of the first 10 eigenvectors is ccintained in 
appendix C. The eigenvalues associated with each eigenvector arc given i n  appendix I). 
Lambda(1f is associated with cGIumn (I), and so forb. The diagonal :.?is& matrix m t8 

also given in appendix D. The U matrtv is orthogonal with respect tc the mass matrix 
(refs. 4 and 5) :  

UTmE = I 
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P i b u t  c3.- ?!&e 3 of t he  thin nirior. Figure C k . -  !ble 4 of t ,te thin Ilcirror. 
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F!prc C9.- YxV 9 of  the thin reinrr. Figure C10.- W e  10 of the thin mlrror. 
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APPEWIX D 

EIGENVALUES AND MASS h.LATRC: FOR THE MUacOEI 

This appendix contains a iistrng of the eigenvalues and the diagonal mass matrix m. 
The SAMIS program eigenvalues arc in\-erscly proporttonal to frequency squared and may 
be converted to frequency (in herfz) by the following relationship: 

, . -  b 

The elements of the mass ntatrtx have the units of lb-secZ/in. 

The eigenwlues of the U matrix are 



APPENDIX D - Concluded 

The elements of the diagonal nitlss matrix a m  
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AP?EM)M E 

BEST ACTUATOR I&CATIONS - DETERMINISTIC CASE 

This appendix contains an enumeration of actuator locations which were found to 
produce minimum error when the e r ro r s  were considered to be completely known (deter- 
ministic) and nonvarying (figs. El to E12). Each figure contains 10 diagrams which show 
the best 10 actuator locations for one OS the three error examples and a specific number 
of actuators. Grid numbers for the actuator locations can be f o w  by comparison with 
the numbered pattern in the lower riqht-hand portion of each figure. The -lues of the 
final error for the modal control law and the optimal control law are given besiile each 
figure in 'be form 

A 
B 
- 

where A is the e r ro r  under the modal control law and B is the e r ro r  under the optimai 
contrc.1 law. These f i n d  e r r o r s  are those given by the square root of equation (531, which 
rel.&ircs that these valiics be multiplied by 0.40 to obtain r m s  error in microinches or by 
Q.019 io obtain rms e r ro r  in wavelengths. 

A particular point of tnterest occurred in  figure EX0 (two actuators, e r ro r  exam- 
ple 3). In this ftg;re the HN matrix was decidedly ill conditioned for most of the exam- 
pies. TIW normalized determinant was as low as 6 x 10-5 and the &st value was 
3.5 X 10-2. If this cast: arose in practice, it would be best to look at  three actuators or 
more. In figure E l l  (titree a-tuatars) the ncrmallzcd deterninant was of the order of 0.3, 
whi4i i s  very good. 
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Figure E8.- Actua+,v locationc which !Gnlmizr t h e  rms error of the mirror for tnree actuators and error example 2. 
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BEST ACTUATOR LWATIOXS - WNCORRELATED ERRORS 

This appendix contains an enumi-*ation af actuator locations which were found to 
generate minimum error under the modal control law (figs. F1 to F5). These were 
obtained by using the errors of exanple 1. The answers arc given besfae each dfagram 
in Ute figure8 in the foliowing form: 

A 
B 
C 

u 

L 

where 

A the error predicted by equation (61) assuming all values of <& are 0 

B the error obtained from quations (53) (293 

C Ue error under the optimal control law 

The pcrforrmnce ifidex 161 that o'ddned from the square root of equation (53) and must be 
muitipLfed by 0.49 t3 obtain r m s  wrcrr in n;icro!nche= 3r by 0.019 to obtain rms errot in  
waveleng3l?3. 

Selccthq other error e%amyles wuuld, of course, result in the selection of differerr[ 
ectuator iocationa; however, it can be seen from L!C values oi &fs i n  tab!c. II that ~e 
effect of P different actuator location could not make the final answer mrich better WCBUSC 

the v a h e ~  of eiN are already v m y  small. For tkds reation the searches for actuator 
locations were restricted to the one cx;rin$r. The searches for one to four actuators 
lnclusive considered uii pass!S!e combinaYons, whcrcsp thctsr? for seven i~ctuitora con- 
sidered only 1 small subset of at1 pmsibfe co-binations. Vtls subset was chovcn from 
thoae locations ilear the nodes of the next three higher order modes. This redwed tire 
number of runs required to a reasomble value ?nd resdted in a selection of actuator loca- 
tions which were reaaonLoIy close to the theorellcitf limit. 
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TABLE II.- VALUES OF FOR N = 1. 2,3, 4, AXD 7 

petermind fur error example I; actuator grid iocations 
corresponding to these values are tabulated below ttre 
values of bfd 

1 i 

I+ Actuator grid locations 

2.011 1 1.46 x 10-3 1 1.35 x lG-3 f 2.1 x 10-2 

3.336 f 7.58 X 1.35 X io-3 i 8.6 x 10-3 I 

4.4 X 10-3 

- 
16, 20, 22, 55 

3.60 

0.541 

7.94 
~~ ~ ~ ~ 

1.51 

6, 23, 26, 31, 53, 56, 51 

95 




